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Spectral Representations of Infinitely Divisible Processes*

BALRAM S. RAJPUT AND JAN ROSINSKI

University of Tennessee at Knoxville

Abstract. The spectral representations for arbitrary discrete parameter infinitely divisible
processes as well as for (centered) continuous parameter infinitely divisible processes, which
are separable in probability, are obtained. The main tools used for the proofs are (i) a
'polar-factorization' of an arbitrary IAvy measure on a separable Hilbert space, and (ii)

- the Wiener-type stochastic integrals of non-random functions relative to arbitrary *infinitely
divisible noise'.

0. INTRODUCTION

For the analysis of many statistical and probablistic problems for stationary Gaussian

4 processes, a significant tool is provided by the spectral representations of these processes in

terms of the "Gaussian noise". Motivated by these considerations, many authors advocated

the need to develop similar spectral representations for symmetric stable processes in terms

* of the "stable noise" and to apply these to study the analogus problems for these processes;

and such representations were in fact developed by several authors (Schilder [27], Kuelbs

[131, Bretagnolle et al [2] and Schriber [28]). With the same motivation, recently spectral

representations of symmetric semistable processes in terms of the "semistable noise" are

also obtained (Rajput, Rama-Murthy [20]) which are shown to be valid for non-symmetric

semistable processes as long as a, the index of the process, is not 1; more recently, a sim-

ilar result for non-symmetric stable processes with index a € 1 is also obtained (Hardin
[7]). Already, the spectral representations of symmetric stable processes have successfully

been used to solve the prediction and interpolation problems (e.g. Cambanis, Soltani [31,

Cambanis, Miamee [4], Hosoya [9]) and to study the structural and path properties (e.g.

:: Cambanis, Hardin and Weron [5], Rootzen [22], Rosinski [25], and Rosinski and Woyczyn-

ski [26,) for certain subclasses of these processes.
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In working with Gaussian and symmetric stable processes X = {Xt : tbT} and their

spectral representations {f ftdA}, one discerns two main reasons which make these repre-

sentations useful in solving various questions about the processes X: (a) Many problems of

interest about X can be meaningfully reformulated in terms of the non-random functions

ft and the corresponding "noise" A (or sometimes in terms of certain parameters charac-

terizing A, e.g. its control measure). (b) These reformulated questions can be effectively

solved by making use of the rich structure of the metric linear space of functions generated

by {ft} and the fact that A enjoys properties very similar to X but, at the same time,

admits much simpler probablistic structure. In view of this observation and the remarks

made in the previous paragraph, it is thus tempting to suggest that one should develop

spectral representations for each subclass of infinitely divisible processes X in terms of the

non-random functions ft belonging to a "nice space" and the "noise" A which exhibits

properties similar to that of X. But, since different methods of proof may be required

to obtain spectral representations for different subclasses of infinitely divisible processes,

it may lead to an unending process; and thus a better question would be to ask: Is it

possible to develop one procedure whereby, for any given infinitely divisible process X,

one can choose non-random functions ft and "an infinitely divisible noise" A such that
d

X- (f ftdA) and, additionally, the following criterions are met?

(i) The "noise" A retains properties similar to X; for example, if X belongs to a

known class such as a-stable or self-decomposable processes, then A belongs to the

corresponding class of "noises".

(ii) The functions ft belong to a linear topological space which is "similar" in its struc-

ture to that of the linear space of the process X.

The main theme of this paper is to provide an "essentially" complete affirmative answer to

this question. This is accomplished in two steps: first, we obtain the spectral representa-

tions for arbitrary discrete parameter infinitely divisible processes; and then, using this and

some limiting arguments, we obtain the representations for continuous parameter infinitely

divisible processes which are separable in probability. We reiterate that the representing r
"noise" A and the representing functions ft chosen for the representations do meet the

criterions (i) and (ii), respectively. In fact, as regards to (ii), we show that the space L

generated by (ft} is a subspace of a suitable Musielak-Orlicz space, which is continuously

(and linearly) embedded in the linear space L(X) of X. Further, if X satisfies some addi-

tional conditions (like the ones mentioned above in the continuous parameter case), then -,-

2 V ,
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we show that L is in fact topologically and linearly isomorphic to L(X). In addition to the

aabove representations which are valid only in law, we also obtain spectral representations

which are valid almost surely; this, however, requires that the process be redefined on a

slightly larger probability space. Before we end this paragraph we would like to make a

few more points: First we note that "integral" representations (in law) of an arbitrary

infinitely divisible process in terms of the "Poisson noise" are known (Maruyama [15]);

but, as neither the noise nor the representing functions necessarily meet the requirements

we ask for, these representations do not fall in the category of the spectral representations

we are interested in this paper. Second we point out that our spectral representations (in

law) of infinitely divisible processes, when specialized to stable and semistable processes,

yield, in a unified way, all known spectral representations for these processes mentioned in

the first paragraph above. Finally, we mention the papers (Cambanis [6], Rajput, Rama-
Murthy [21 and Hardin [8]) which have some relevance to the spectral representations we

*, have discussed above.

Besides the spectral representations noted above, we also present several other results

which fall in two broad categories. All of these play a crucial role for our proofs of the

spectral representation theorems, but we also feel that these will be of independent interest.

In one category of these results, we obtain a "polar factorization" of an arbitrary LUvy

measure on t 2 in terms of a finite measure on the boundary of the unit sphere of '2

and a family of Levy measures on the real line. This factorization is similar in spirit to

the known factorization of a symmetric stable Levy measure on R' (Ldvy [14]) and on t2

(Kuelbs [131); and plays an analogus role in the development of the spectral representations

here as did the factorization of a symmetric stable Levy measure for the proofs of the

NP spectral representations of symmetric stable processes in [2, 13, 27, 28]. The results in

the other category concern with a systematic study of Wiener-type integrals f fdA of non-

random functions with respect to an arbitrary "infinitely divisible noise" A. The main

results we present here are: (a) a characterization of A-integrable functions in terms of

certain parameters of A; (b) the identification of the space of A-integrable functions as a

certain Musielak-Orlicz space; and (c) an isomorphism theorem between this Musielak-

Orlicz space and a suitable subspace of LP-space of random variables. The theory of

Wiener-type integrals under various hypotheses on the "noise" A has a long history (e.g.

Urbanik, Woyczynski [30], Urbanik [29], Rosinski [23, 24], Schilder [27] and Rajput and

Rama-Murthy [20]); the development of these integrals presented here is the most general

3
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49 in the sense that we require minimal hypotheses both on the "noise" A and the space on

which integrands and A are defined.'

The organization of the rest of the paper is as follows: Section 1 contains the prelimi-

naries; Section 2 contains the development of stochastic integrals relative to the "infinitely

divisible noise" A and a characterization of A-integrable functions. Section 3 concerns with

the identification of the space of A-integrable functions as a certain Musielak-Orlicz space

and its isomorphism with the subspaces of Lp-space of random variables. Sections 4 and

5 contain, respectively, the spectral representation results (in law) for the discrete and

the continuous parameter infinitely divisible processes; Section 4, also contains the "polar

factorization" result of L~vy measures on t2. Section 6 concerns with the spectral repre-

sentation of infinitely divisible process which hold almost surely. Section 7 constitutes of

an appendix and contains a proof of a result which establishes the existence of a measure

on the product space given a family of marginal measures satisfying certain hypotheses.

* We would take the liberty here to thank Mary Drake for the patience and care she has

shown while typing this manuscript.

I. PRELIMINARIES AND SOME NOTATIONS

In this section, we recall some definitions and known facts; also we fix some notations

and conventions which we shall use throughout the paper.

Let H be a real (finite or infinite dimensional) separable Hilbert space and let i be

an infinitely divisible (ID) prob. measure on H (i.e. 1L has a unique n-th root for each

n= 1,2,3...). As is well known, for every ID prob. measure i, {' :s > o}, the set of

s-th roots of ti, forms a continuous (in the weak topology) semigroup under convolution,

which is also tight on every finite interval of R + = (0, oo). Using this semigroup, we shall

now define Gaussian, stable and semistable prob. measures on H. These definitions are

non-standard but are equivalent to the traditional definitions which are usually given in

terms weak limits of certain normed sums. We adopted this route mainly because we make

use of these defining properties of these prob. measures. Before we record these definitions,

we introduce a few notations: For a measure v on H and a nonzero a in R (the reals), we

denote by a v, the measure defined by a. v(B) = v(a - 'B), for every Borel set B of H;

'Recently the authors have received a manuscript by Kwapien and Woyczynski entitled Sermartingale
integ als va decoupding inequalities and tangent processes. In this paper, they give a characterization of previsible
stochastic processes that are integrable relative to semimartingales. As a necessary first step to obtain this
result, they also characterize non-random functions that are integrable relative to general "independent
increment noise". This later result, obtained independently of ours, has some overlap with our Theorems
3.3 and 3.4 when specialized to S [0, oo) and p = 0.

A4



further, we shall use the notations S(a), S(r,a) and SD for the phrases "stable of index

a", "semistable of index (r, a)" and "self-decomposable", respectively, where 0 < a < 2

and 0 < r < 1. Let now p be a prob. measure on H, we say p is a S(a) (resp. a S(r,a))

prob. measure if A is ID and

(1.1) At = t! .A * 6 z(t), for all tc (0, 1],

(1.2) (resp. p7 = r " * b(,)),

where b(t) and b.(,) denote the Dirac measures at the elements x(t) and z(r) of H,

respectively, and * denotes the usual convolution operation. If x(t) in (1.1) (resp. in (1.2))

is e, the zero element of H, and a 5 1, then we say I is a centered S(a) (resp. a centered

S(r, a)) prob. measure. If a = 1, then we say t is a centered S(1) (resp. a centered S(r, 1))

prob. measure only in the case when 1 is a symmetric S(1) (resp. S(r, 1) ) prob. measure.

If A is ID and (1.1) (or equivalently (1.2)) holds with a = 2, then we say A is Gaussian,

and, if, in addition, x(t) = 0 (or equivalently x(r) = ), then we say p is centered (or

symmetric) Gaussian. Finally, we say p is a SD prob. measure, if

(1.3) p = t -* t, for all 0 < t < 1

where vt is a prob. measure on H.

Let now T be an arbitrary index set and X _ {Xt tET} be a real stochastic process,

we say X is an ID (resp. a symmetric ID) process if, for every finite set t1,... ,tt} of

T, C(Xt."" Xt.), the law of (Xt,' Xt.), is an ID (resp. a symmetric ID) prob.

measure on R', the n-Euclidean space. The definitions of SD, S(a), S(r, a) and Gaussian

processes, of their symmetric counterparts and of centered S(a) and S(r, a) processes can

be stated in the obvious way.

Now we shall define various ID random (r.) measures. Throughout the paper, unless

stated otherwise, we denote, by S, an arbitrary non-empty set and, by S, a 6-ring of

subsets of S with the property:

- (1.4) There exists an increasing sequence {S,,) of sets in S with US, = S.
n.

'i Let A = {A(A) : AES) be a real stochastic process defined on some prob. space (fl, ,P).

We call A to be an independently scattered r. measure (or r. measure, for short), if, for every



Av.

sequence {A,} of disjoint sets in S, the r. variables A(An), n = 2, are independent,
A' and, if UA, belong to S, then we also have

A uAn = A (An), a.s.,
A'..

where the series is assumed to converge almost surely. In addition, if A(A) is a symmetric

* 'r. variable, for every AcS, then we call A a symmetric r. measure. We call a r. measure A

"A". to be an ID r. measure if A(A) is ID; if, in addition, A(A) is symmetric, then we call A

to be a symmetric ID r. measure. The definitions of S(a), S(r,a), SD and Gaussian r.

measures, of their symmetric counterparts and of centered S(a) and S(r,a) r. measures

can be stated analogously.

Before we end this section, we would like to mention a few more conventions and nota-

tions: While writing the L6vy representation of the characteristic (ch.) function 2 of an

• ID prob. measure IL on H one can use many different centering functions, we found the

centering function

z) {4 if Izl > 1
-"-" z if I11 1

easier to work with in our calculations. We shall, therefore, use this centering function

throughout. By a L6vy measure defined on a Borel subset B of H, we shall always mean

any measure M on B satisfying fBmin(1, Izlj 2 )dM < oo, with M({0}) = 0, if OEB.

Whenever it is important that M be defined on the whole of H, we will do so by assigning

M(B) = 0; but will use the same notation for the extended measure.

By the statement "M is a SD L6vy measure on B" we would mean that M is a L6vy

measure of a SD prob. measure on H; we shall adopt a similar convention relative to the

Le,y measures of other classes of ID prob. measures on H. Finally, for a given topological

space X, 8 (X) will always denote its Borel a-algebra.
II. INFINITELY DIVISIBLE RANDOM MEASURES AND STOCHASTIC INTEGRALS

Throughout this paper A = {A(A) : AcS} will denote an ID r. measure defined on

some prob. space (f), 7, P) (recall that S stands for a 6-ring of subsets of an arbitrary
non-empty set S satisfying (1.4)). Since, for every AcS, A(A) is an ID r. variable, its ch.

function can be written in the Lvy's form:

(2.1) £(A(A))(t) exp {itvo(A) - _t v,(A) + f (e't- 1 - itr())FA(dx)}

6"9
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where -oo < vo (A) < o, 0 < v, (A) < o and FA is a Ldvy measure on R. In this
section, we first show (Proposition 2.1) that there is a one to one correspondence between

the class of ID r. measures on one hand and the class of parameters Vo, v, and F on

the other. This fact, under various additional assumptions, was "essentially" proved in

Pr~kopa [18, 191 and Urbanik and Woyczynski [301. We include a proof of this fact here,

since this proposition is quite important to us and since our proof is very simple and uses

only standard arguments of the classical probability theory. Through this result we also

define A, the control measure of A. Next we show (Lemma 2.3) that F.(.) determines

a unique measure on a(S) x B(R) which admits a factorization in terms of a family of

Ldvy measures p(s,.), sES on R and the measure A. This fact plays an important role

throughout the paper; in particular, this helps us derive another form of the ch. function

of C(A(A)) in terms of the measures p(s,-) and A (Proposition 2.5). This form of the ch.

function plays a crucial role in obtaining the ch. function of the stochastic integral fS fdA

(which we also define) (Proposition 2.6) and in the proof of the main result of this section

(Theorem 2.7) which provides an important characterization of A-integrable functions.

PROPOSITION 2. 1. (a) Let A be an ID r. measure with the ch. function given by (2.1).

Then vo : S i-* R is a signed-measure, vi S [-(0, Oc) is a measure, FA is a L4vy

measure on R, for every AcS, and S D A - FA(B)c [0, oo) is a measure, for every

BcB(R), whenever 0 B.

(b) Let vo, vi and F satisfy the conditions given in (a). Then there exists a unique (in

the sense of finite-dimensional distributions) ID r. measure A such that (2.1) holds.

(c) Let v, vi and F. be as in (a) and define
A(A) = IvoI(A) + vi(A) + Rmin{1,x2FA(dx), AS.

Then A : S '--* [0, oo) is a measure such that A(A,) 1-o 0 implies A(A,) -- 0 in prob.

for every {A,,} C S; further, if A(A) --- *0 in prob. for every sequence {A'} C S such

that A' c ACS, then X(A,) - .

PROOF: (a) Let {Ak}n. be pairwise disjoint sets in S. By the uniqueness of Lvy's

representation of the ch. function of an ID distribution, it follows, using Z (A (U-k Ak))

"-k= I (A (Ak)), that all three set functions v., v, and F.(B) are finitely additive. Let

now A, S, An \ 0. Since A(A,) - 0 in prob., we have that vo (An) 0 0, v,(An) -- 0

and fR min{1,X 2}FA,,(dx) -* 0. By Chebychev's inequality, we get

FA. ({[ }) C e f- min-,*0,FA,.(dx) 0,

a. 7
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for every c(O, 1), which completes the proof of (a).

(b) The existence of a finitely additive independently scattered r. measure A = {A(A)

AcS} follows by a standard application of the Kolmogorov Extension Theorem (see e.g.

[111). To prove that A is countably additive, let AncS, An \ 0. Since FA, > FA2 >

we get

im f min{1,z2}FA,(dx) < lima min{1,x2 }FA,,(dz)
J-oR n oo{4-1<0

n-oo Il+ lim FA. ({Iz 1}

min{1,x 2 }FA (dx)

where e > 0 is arbitrary. Letting E --+ 0 we obtain that fR min{lX 2}FA (dx) -- 0. Since

also v.e(An) --+ 0 and v1 (An) -- 0, we get A(A,) --+ 0 in prob., proving that A is countably

additive.

(c). It follows that A is countably additive by a similar argument as we used for proving

the countable additivity of A above. For the last part, decompose An = A( ) U An such

that vo AnO1) = v+(An) and LVo(A (2 )= -vo(A,). Since A Ant) -* 0 in prob. as n -*

o, (1,2, we get that o An) 0, vi (An') - 0 and fR min{1,x 2 }FAt,) (dz) - 0 as

n - o0, i = 1, 2. This implies that A(An) --+ . |

Definition 2.2. Since A(Sn) < o, n = 1,2,... we may (and do) extend A to a a-finite

measure on (S,a(S)); we call A, the control measure of A.

LEMMA 2.3. Let F be as in Proposition 2.1(a). Then there exists a unique a-finite

measure F on a(S) x S(R) such that

F(A x B) = FA(B), for all AES, BEB(R).

Moreover, there exists a function p: S x B (R) i-* 10, o0] such that

(i) p(s, .) is a Levy measure on B(R), for every sES,

(ii) p(., B) is a Borel measurable function, for every BEB(R),

(iii) fSxR h(s,x)F(ds, dx) = fS [fR h(s,x)p(s, dx)] A(ds), for every a(S) x B(R)-meas-

urable function h : S x R -+ [0, o]. This equality can be extended (with obvious

restrictions regarding the arithmetic of ±oo) to real and complex-valued functions

h.

The proof of Lemma 2.3 relies on some measure-theoretic facts stated in Proposition

2.4. This proposition, under additional assumptions on the space T and the function Q0 is

8
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essentially known (one proves the existence of Q by using standard compactness argument

for the extension of measures; and, then one constructs q(.,.), using the existence of the

regular conditional prob. on T x R). Since in our paper (T, A) is an arbitrary measurable

space, the compactness argument cannot be used; and a baically different proof seems to

be required to construct the measure Q. In fact, we first construct the function q(.,.) and

*then use Tulcea's Theorem ([1] p. 209) to construct Q. We are unable to find a reference

for a proof of this result in the present general form, for this reason and for reasons of

completeness, we include a proof in Appendix (Section 7). We separated this proof from

the main body of the paper, since it does not provide any insight to the main ideas of this

paper.

PROPOSITION 2.4. Let (X, B) be a standard Bore) space (i.e. a measurable space such

that B is a-isomorphic to the Borel a-algebra of some complete separable metric space),

and let (T, A) be an arbitrary measurable space. Let Qo (A, B) be a non-negative function

of AEA, BEB, satisfying:

(a) for every AEA, Qo(A,.) is a measure on (X, B),

* (b) for every BcB, Qo(.,B) is a measure on (T,A),

(c) the measure A. defined by A. (A) = Q. (A, X) is a-finite on (T, A).

Then there exists a unique measure Q on the product a-algebra A x B such that

" (2.2) Q(A x B) = Q,(A,B) = q(t,B)Ao(dt),

for every AcA, BEB, where q : T x B --+ [0, 11 fulfills the following conditions:

(d) for every t, q(t,.) is a probability measure on B,

(e) for every B, q(., B) is A-measurable.

Further, if q, (',") is some other function satisfying (2.2), (d) and (e), then off a set of

A(,-measure zero, q, (t,.) = q(t, .).

PROOF OF LEMMA 2.3: Put

Go(A,B) lBmin{1,X2}FA(dx), AS, BdB(R).

Since for every BcB(R), G,(.,B) is a finite measure on (S,,, S nS,,), n > 1, Go(.,B) has a

unique extension to a a-finite measure on (S, a(S)). Denoting this extension by Q0 (A, B),

we see that the assumptions of Proposition 2.4 are satisfied with (T, A) = (S,a(S)) and

, % *- % ., , ' ' " - % % . "- % "° ' .' / .-.. ' - -- ' - ' - - - - "- ' " -.. "- - " " "- " " ' " . "- " " - - -9' '



(X, B) (R, 8(R)). Thus there exists a measure Q on the product a-algebra a(S) x B(R)

such that

Q(A x B) = G.(A,B) = r q(sB)A.(ds)'

where A. (A) G. (A, R) and q satisfies (d) and (e) of Proposition 2.4. Note that A. (A) <

A(A), for every AEa(S), which implies that A0 < A; now define

dAP''. (s, dx) = dd(s ) (min {1, x'))- q(s, dx) .

Then (ii) is satisfied and

JR min{1, -(p(sdx) (s) q(s, dx) ' (s) 1,

which proves (i) (we may always assume that d- (s) < 1 for all s). Define

(2.3) F(C) I [J I ((s, x))p(s, dx)] A(ds),

Ca(S) x B(R); then F is a well-defined measure that satisfies, for every AES and BEB(R),

F(A x B) IA [lBp(s, dx)] A(ds)

'AX q(sd)
= [£(min{1, }--qs, dx) A.o(ds )

LBI

f (min{1,2}) - Q(ds, dx)
AxB

f,. (min{, X2)' Go(A, dx)= FA (B);
JB

(iii) now follows from (2.3) by a standard argument. This completes the proof of Lemma

2.3. I

Using Lemmas 2.1 and 2.3 we obtain a very useful form of the ch. function of A(A):

PROPOSITION 2.5. The ch. function (2.1) of A(A) can be rewritten in the form:

L (A(A)) (t) =exp{J K(t, s)X(ds)}, tcR, AS S

where

K(t,s) ta(s) lt2a(S) + (eit - 1 - itrX()) p(s, dx),

10
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a(s) (s), a 2(s) = (s) and p is given by Lemma 2.3. Moreover, we have

(2.4) la(s) I + U 2 (s) + ] min{1, z 2}p(s, dx) 1 a.e.[A].

%: PROOF: First part immediately follows from (2.1) and Lemma 2.3. Since, for every AcS

we have

IA [a(s) + a2 (s) + J min{1,x2}p(s,dx)] A(ds)

-vo](A) + v, (A) + / min{1,x 2 }F(ds, dx) A(A) - dA,
Js×RJ

..(2.4) follows; which completes the proof. I

The following definition of the stochastic integral, proposed first by Urbanik and Woy-

czynski [30] is the usual definition of the integrals with respect to a vectcr measure taking

values in the Lo (fl, 7, P)-space (see also [231).

Definition. (a) Let f =- 1 XjIA, be a real simple function on S, where AjES are

disjoint. Then, for every Aw(S), we define
n

IAfdA ZxjA(AI A,).
fA j= 1

(b) A measurable fupction f : (S,a(S)) -* (R,B(R)) is said to be A-integrable if there

exists a sequence {fn} of simple functions as in (a) such that

% - (i) f. --f a.e. [ ]

(ii) for every Afa(S), the sequence {fA fdA} converges in prob., as n -- oc.

If f is A-integrable, then we put

.1, fdA P - lim fndA,

A

where {fn} satisfies (i) and (ii).

We note that fA fdA is well defined (i.e. it does not depend on the approximating

sequence {ff}, Urbanik and Woyczynski [301). Now we proceed to find an expression of

the ch. function of fs fdA:

':. .11



PROPOSITION 2.6. I f is A-integrable, then f, IK(tf(s),s)IA(ds) < oo, where K is given

in Proposition 2.5, and

(2.5) Ne (s fdA) (t) = exp {fs K(tf(s), s)A(ds) }, tcR.

PROOF: Note first that (2.5) holds for simple functions. Let {f, } be a sequence of simple
functions in the definition of A-integral. Define complex measures #t,,', tcR, n > 1, by

JA K(tfn (s),s)A(ds), Afa(S).

Since, for every t(R and Acu(S),

lim At,n(A) = lim log ( fn dA (t)
n:r--- oo -o (f

og log (IA fdA)

= (A),

it follows, by the Hahn-Saks-Vitali Theorem, that jt is a countably additive complex

measure. Clearly #Lt is absolutely continuous with respect to A. Therefore, for every tER,
there exists an htfi (S,a(S), A; C) such that

log (fA fdA) (t) I t(A) = f ht(s)A(ds),

for every Aca(S). To end the proof it suffices to show that ht(s) = K(tf(s),s) a.e. [A], for

each teR. Let tcR be fixed. By the continuity of K(.,s), for each scS, we obtain

(2.6) K(t f,, (s), s) - K (t f(s), s) a.e. [ A],

as n -- oo. Using Egorov's Theorem, we may decompose S as follows: S = U 0 A3 ,

where A(Ao) = 0, A(Aj) < oo, if j > 1, and such that (2.6) holds uniformly in sEAj,

1,2. Hence, for every j > 1 and Acw(S),

l" A ht(s)A(ds) = #t(A n Aj) = lim f (tfn(s),s)A(ds)

Sl~A.,K(t f,(s), s)A(ds)
:'.. A n Aj n --oo A n A i

=f K (t f (s), s) A(ds) .
JAnAj

It follows that ht(s) = K(tf(s),s) a.e.[A] on A,, j _> 1. Since A0 is a A-null set, the last

equality holds a.e.[A] on S. I

As we noted in the beginning of this section, the following is the main result of this

section. It provides a necessary and sufficient condition for the existence of fs fdA in

terms of the deterministic characteristics of A.

12



THEOREM 2.7. Let f : S -- R be a u(S) -measurable function. Then f is A-integrable if

and only if the following three conditions hold:

(i) fs IU(f(s), s)IA(ds) < oo
i~_ i (ii) fS If($) 120r2(s)A (ds) < oo,

and

(ii i) fs V.o(f(s), s) A(ds) < oo,

where

U( us) =a(s) + (r(xu) - tur(x)) p(a, dx),

V.(u,s) = Rmin{1, IXU1}p(s, dx).

Further, if f is A-integrable, then the ch. function of fs f dA can be written as

(iv) 2(fS fdA)(t) = exp itai - 1 + t Re2ta + 1 - itr(x))Ff(dx)

where

U (f(s), s)A(ds),

, Al -- f(s)12 o 2 (s)(ds) ,

and

Ff(B) =F({(s,x)cS x R :f (s)xB \{O}}), BEB(R).

PROOF: Assume that f is A-integrable. By Proposition 2.6, we have that

S(J fdA) (t) =exp {2 ReK(tf()s)A (ds)}

exp {2J [-t2f2(s)C2(s) +JR (cos(tf(s)x) - 1)p(s, dx)] )(ds)}

- dexp t~r 2 (o 1) r'd'dx

is the ch. function of an ID distribution. Hence a 2 < oo and fR min{1,x 2}Ff (dx) < 0o.

This proves (ii) and (iii). Now, since Ir(x) - sinxl < 2min{1,x 2}, we get

..-u,s)l < ua(s) + fR [sin xu - ur(x)] p(s, dx)

V.+ JIr(xu) - sin xu] p(s, dx)

< IImK(u, s) + 2Vo (u, s).

13
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Thus (i) follows by Proposition 2.6 and already proven (iii). In view of (i), (ii) and (iii), it
is easy to derive (iv) from (2.5).

Conversely, assume that (i), (ii) and (iii) hold. Let An = {s: If(s)I 1 !n} n Sn. We have

that AncS and An / S. Choose fn's, simple S-measurable functions, such that fn(s) = 0,

ifs An, I(S) -f(S)I < if seAn, and Ifn(s)l < If(s)I, for all scS. Clearly fn - f
everywhere on S, as n -- oo. Since, for every Ao(S) and n, m> 1

l[fn(s) - f,,(s)] 1A(S)l < 21f(s)l

by Lemma 2.8, which follows this proof, we get

.U ([fr(s) - fm(s)] IA(S),S)I <_ 2IU (f(s),s) + 27V (f(s),s)

Therefore, by the Dominated Convergence Theorem, we obtain that, for every AEC(S),

lim U ([fn(s) - fm(S)] 1A(S),S) A(ds) = 0,

lim [[fn(s) fm(S)12 1A(S)o2 (s)A(ds) =0,
n , m -oo i

and

lim ! V ° ([f (s) - fm (s)] 1A(s),S) \(ds) 0.
n,mn-oo J

In view of (iv), limn,m.o, Z (fS [fn -- fm] 1AdA) (t) --+ 1, for every tfR and Aa (S). Hence

the sequence {fA f'dA},n- converges in prob., for every Aca(S); i.e. f is A-integrable. U

LEMMA 2.8. For every ufR, sES and d > 0,

sup{IU(cu,s)I : I1 < d} d IU(u,s)l + (1 + d)3 Vo(u. s).

- . PROOF: Let Ic[ < d. We have

U(cu, s) = cua(s) + JR [r(cux) - cur(x)] p(s, dx)

=cua(s) +± JR [T(ux) - tsr(x)] p(s, dx)

+ fR [r(cux) - cr(ux)] p(s, dx)

= cU(u,s) + R(c,u,s),

14
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where R(c, u, s) denotes the last integral. Since r(cux) - cr(ux) = 0 if Iux < min{1, jcl - }
and IT(cut) - cr(ux)I < 1 + d otherwise, we get

IR(cus)i -< (1 + d) j) p(s,dz)

< (1 + d)p (s, {z : min{1, uzl} _> min{1, jc-1}})

Sn1+d fRmin{1,'uzl2}p(sdz),<-min{1,1lcj-2} f

by Chebyshev's inequality. Since the last quantity is bounded by (1 + d)3 Vo(u, 8), the proof

is complete. I

Usually it is easier to verify conditions for the existence of f fdA when A is symmetric.

The next proposition shows how to characterize the A-integrable functions f, using A-

integrability of f, where A is the symmetrization of A.

PROPOSITION 2.9. Let A' be an independent copy of A and put A(A) = A(A) - A'(A),

AcS. Then for an arbitrary function f : S A-) R, f is A-integrable if an only if f is

A-integrable and the condition (i) of Theorem 2.7 is fulfilled.

PROOF: The Lemma follows immediately from Theorem 2.7 because

(- (A)) (t)= exp { t 2 a ( 8 ) + 2jf(costx-1)-i(s, dx)] A(ds),

where 0(s, B) = p(s, B) + p(s, -B), BcB(R). I

III. CONTINUITY OF THE STOCHASTIC INTEGRAL MAPPING

AND IDENTIFICATION OF A-INTEGRABLE FUNCTIONS

In this section we shall identify the set of A-integrable functions as a certain Musielak-

Orlicz modular space, and shall prove the continuity of the mapping f - fs fdA from

this modular space into Lp(fl, P). In addition, under certain conditions on A, we shall

show that the inverse of this map is also continuous. We also point out that these results

on stochastic integrals unify and extend the corresponding results of [23, 29, 30]; further,

using these results, we show that one can easily recover, in a unified way, the results

concerning stochastic integrals and the space of A-integrable functions obtained in [2, 7,

20, 2'7];

We begin with some preliminaries. Let q be a non-negative number such that

* . (MC) EJA(A) q < oo, for all AcS.

o15



Throughout this section, we shall assume that the above condition is satisfied and qf [0, x0)
is fixed (note that every A satisfies MC with q = 0). Hence, using the standard fact which

states that for an ID distribution tt with Livy measure G, fIX lqU (dx) is finite if and only
if f{{>. 1 > JXjqG(dx) is finite, we have

fA zlIXqp(s, dx)] )(ds) = IxqFA(dx) < oo,

for every AES (recall FA is the Livy measure of £ (A(A))). Hence A-a.e.

(3.1) 4Z1 jXjqp(s,dx) < oo.

(>1}

Thus, without loss of generality, we may (and do) assume that (3.1) holds for all sES.

Define, for 0 < p < q, uR and scS,

(3.2) 4P(t,S) = U'(u,S) + U2a 2 (S) + VP(t,s)

where

U'(t,s) = sup U(cu,S)l

and

Vp(u,s) J {Iuz~lI(IuXI > 1) + IUX12I(IuxI < 1)}p(s,dx).
00

Next we state and prove two lemmas which will be needed for the identification of the

space of A-integrable functions as well as for the proof of the continuity of the stochastic

integral mapping and its inverse.

LEMMA 3. 1. The following are satisfied:

- (i) for every sgS, Op(-, s) is a continuous non-decreasing function on [0, oo) with Op(O, s)
A. 0,

(ii) A ({s p(u,s) = 0 for some u = u(s) 5 0}) = 0,

(iii) there exists a numerical constant C > 0 such that
Ig

'Op *(2u, s) C~p (u,a) ,

for all u > 0 and scS.

16



PROOF: It is easy to prove that U(., s) is continuous; using this one proves as easily that

& U* (.,s) is also continuous. Using this fact and the Dominated Convergence Theorem, we

establish the continuity of tp(., s). To see that tp(., s) is non-decreasing we observe that

U* (-, s) is non-decreasing and, for each fixed u,

- { m in {I X U lp'IX U12 1 if O ~ < } 0 < p :5i 2
(3.3) luxlI(jzul > 1) + Ixu2I(Iju 1) = {jXUjpjIU1 2} if p2

max {lIzuIl, Ixul 2} i p >2

is increasing in z > 0. Now we prove (ii). If tp(u,s) = 0, for some u = u(s) $ 0, then

p(s,R) = 0, a 2 (s) = 0 and U(u,s) = 0. By the definition of U(u,s), we get a(s) = 0.

Therefore,
S {s: tp(u,s) = 0 for some u = u(s) $ 0}

- { (: (s) = a2(S) = p(s, R) = 0}.

(Note that above equality also establishes the measurability of SO). Let A be any measur-

able subset of S,. Since vo,(A) = fA a(s)A(ds) = 0, we get lo I (So) = 0. Thus

A(SO) = I'o(So)+ f o (s)Ads) +fsL min{1, lIX2}p(s,dx) =0.

To prove (iii), we use Lemma 2.8 and (3.3), and get

tp(2u, s) < 2jU(u, s)l + 27Vo(u, s) + 4U2 a2 (S) + (2 P + 4)V (u, s)

-< < (2P + 31)tp(u,s).

LEMMA 3.2. Let {s,,} be a sequence of ID. prob. measures on R with Lvy repre-2 _+0"C 2 -+ 0 and
sentation: #n = (an, cr, G). Assume i,, b,, ; equivalently, a, -* 0, an

fc min {1, I I} dG,, - 0. Then, for any b > 0,

f Ix ujpn(dx) 0 o l [ xl 6G(dx) -* 0.
R f{ Izi> I

(It is, of course, assumed here that fR ixlbdAt < oo (and hence f(, z>,)IxibGn(dx) < oo),

for all n).

-. PROOF: Under the hypothese of the Lemma, it is easy to prove that

(3.4) lim sup f Ixl 6Gn(dx) = 0 4 lir lxlbG(dx) = 0,

.9 and
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(3.5) lir sup f IxIb,,(dx) = 0 =lin zIi},,(z) o.
t;.'- m z10n o>')

Now assume fjj1 I>1} lxlbGn(dx) -* 0, hence, by (3.4) and Theorem 2 of 1101, (note that

S' {,,} is compact) limt_. sup, f{1.1>t ) 1XbIn(dx) = 0. Thus, by (3.5), f{ 1 1>1 ) IXIn(dx)

.* 0. But, as An L , we have fflx< IXIb A,(dx) -- 0. This proves fR IXIb,,(dx) -- 0.

Conversely, if fR IzXbwn(dx) -- 0, then, by (3.5), limt__. supn f(i.>t IXIb.s(dx) 0.

Thus by [101 again, limt_...supnf ihi>} IXlbG,(dx) = 0; which along with (3.4) imply

.'-". that limn fjz1 >) I xluG"(dx) = 0. 1

In order to get ready to state and prove our first main result of this section, we will need

a few more notations and definitions:
We define the so-called Musielak-Orlicz space

Lo p(S; A) jf cL"(S; A) 0 p (IfJ(s) 1,s) A (s) < oo}

'- . The following properties of Lop(S; A) (which are well-known for general Musielak-Orlicz

* " spaces generated by functions which satisfy (i), (ii) and (iii) of Lemma 3.3) will be used

throughout this paper: The space Lp (S; A) is a complete linear metric space with the

F-norm defined by

IfHOP= inf{c >0: fsp(c-'f(s),,s)(ds) < c}

Simple functions are dense in LOP(S;A) and the natural embedding of LO,(S;A) into

Lo (S; A) is continuous (here Lo (S; A) is equipped with the topology of convergence in A

measure on every set of finite A-measure). Finally, Ijf 1I1',, - 0 if and only if f, Op(IfA( )i, s)
A(ds) - 0. For these and further facts concerning Musielak-Orlicz spaces, we refer the

reader to [161.

THEOREM 3.3. Let 0 < p < q and 4P be as in (3.2). Then

f : f is A-integrable and E fdA < oo} (S; A),
'f¢

and the linear mapping

-" ... Lc(S;,A) f ... f f fdA E Lp (0; P)

18
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is continuous (note that p = 0 here signifies that Lo. (S; A) = {f : f denotes A-integrable}).

PROOF: Let f E Lo,(S;A); i.e. fsp o(If(s)I,s) A(ds) < oo. Then, it is easy to see that

the conditions (i), (ii) and (iii) of Theorem 2.7 are satisfied, so, f is A-integrable. If F
,. ,J

.'-:- denotes the Levy measure of Z(fs fdA) (see Theorem 2.7), then we have

S[f If (s)xIp(s, dx) A(ds)
uI>1 I ()zI>1)

f L (I f(s)1, s) A (ds) <0;

and, consequently, E If f dAI P < 00.

Conversely, assume that f is A-integrable and E IfS f dAI P < oc. By Lemma 2.8 and (i)

-w dand (iii) of Theorem 2.7, we get

A (If(s)Is)A(ds) < 1IU(f(s),s)f A(ds) + 8 V(f(s),s)A (ds) < .

Since E fs f dAI < oo, we have fh >, IzIPFf(dx) < oo; hence, by (3.6) and (iii) of
Theorem 2.7, we get

f" Vp(f(s),.s) A(ds) < IZPFf(dx) +f Vo (f(s),s) A(ds) < o.

Combining the above and (ii) of Theorem 2.7, we get f E Lop(S; A).

Let f, -. 0 in Lop (S;A); i.e.

(3.7) 1 p (If- ('s),) A (ds) --+ 0 as n --+o.

Let an, on and F, be, respectively, the centering constant, the variance and the LUvy

measure in the canonical representation of the ch. function of £ (fs fdA) (see (iv) of

Theorem 2.7). Then (3.7) implies that an - 0, C, _ 0 and

RJR {IXIp (1 > 1) + X2 I(lXl < 1)} F(dx) -- 0,

. as n -- o,. Thus, in view of Lemma 3.2, E IfsfndA P --+ 0, as n - oo if p > 0; and, if

p = 0, then clearly fS f, dA -- 0 in prob. I

We shall study now the conditions under which the mapping f - fs f dA is an isomor-

"-, phism. First we note that, in general, this mapping is not one-to-one. Indeed, if A(ds) ds

.19
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is the (deterministic) Lebesque measure on S = [0, 1], then obviously f f I f f(s)ds is

not one-to-one. In view of this, one needs to impose some suitable condition on A (or

on some of its parameters) which, on one hand, alleviates this difficulty and makes the

mapping an isomorphism but, at the same time, is weak enough so that it is satisfied by

a large class of ID r. measures. We found the following condition quite satisfactory with

regard to these criterions; we refer this as (IC) (I for isomorphism, condition:

SThere exists a constant C = C(p,q), 0 < p < q,

" (IC) such that for every u > 0

IU s)l C {ts202(s) + Vp(u,s)} a.e. [A].

The following is our second main result of this section.

-A, THEOREM 3.4. Let (IC) be satisfied for some 0 < p : q. Then the mapping f -* fs fdA

is an isomorphism from Lo,(S; A) into L.(fl; P). Moreover,

.f f{dA:f E Lop(S; A) =lin{A(A) : A E S}Lp(O;P)

PROOF: By Lemma 2.8 and (IC), we get, for every u > 0,

U(u,s) < IU(u,s) + 8Vo(u,s)

(3.8) < C, {U 2 2 (S) + V,(US)}

a.e. [A], where C, < C + 8.

Let E Ifs f'dAp -* 0, if p > 0 or fs fdA -*0 in prob. if p 0. By Theorem 2.7 (iv)
and Lemma 3.2, we have

fs If (s)] 2  2 (s)A(ds) - a -- 0

and

f- Vp(fn(s), s)A(ds) f f j (Ix XlJ > 1) + IX12I(I I <_ 1)} Ffn(dx) -- 0,

as n -+ oo, where °f and Ff. are respectively, the variance and the Lvy measure in the

canonical representation of the ch. function of Z (fS fdA). Thus, by (3.8), we have

f sU ( f (s) ,s) A(ds) -0 as n oo.

20
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Therefore, f, $tp (If (s) ,s) A(ds) -- 0; i.e., f, - 0 in L4,(S;A). This proves the in-

vertability of the map f fs fdA and the continuity of the inverse map.mUsing the fact that simple functions are dense in Lp (S; A) and that

- .

lin {A(A) : A c S} {s fdA f is simple

the proof of the last statement of the theorem is easy. I

Corollary 3.5. Let (IC) be satisfied for some 0 < p q and fs ffdA l 0 in Lp(fl; P).

Then f, -- 0 in A on any set of A-finite measure.

PROOF: It follows from Theorem 3.4 and the earlier noted fact that the natural embedding

of L,4 into Lo(S; A) is continuous. I

The (IC) condition is imposed on certain parameters of A and not directly on A; this

limits the usefulness of Theorem 3.4 somewhat. Thus, it is desirable to find sufficient con-

ditions directly in terms of A which guarantee (IC) and hence also the fact that the integral

mapping is an isomorphism. We shall provide such sufficient conditions in Propositions

3.6 and 3.8.

PROPOSITION 3.6. The condition (IC) is satisfied under any of the following two hy-

potheses on the ID r. measure A and the real number p:

(i) A is symmetric and 0 < p < q arbitrary,

(ii) E [A(A)] = 0 for all A and 1 < p < q.

PROOF: That (IC) holds under (i) is trivial, since in this case a(s) 0 and p(s,-) is

symmetric, which implies that U(.,s) _ 0 a.e. [A]. Now we prove that (IC) holds under

(ii). Since E A(A)I q < co, q > 1 and E{A(A)} =0, we have

£(A(A)) (t) =exp - t2v, (A) + J (e't - 1 - Itx) FA(dx)

(3.9) =exp -itVo(A) -- It2 l(A)+i (eitz -litr(x))FA(dx),

•- where vo(A) fR [r(z) - x] FA(dx). Hence, by Proposition 2.5, a.e. [Al,

(3.10) a(S) JR- (x) -x) p (s, dx) and U (u, s) Jn (r (u x) - u x) p (s, dx).

. 2
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Thus we get, for every p > 1,

MUu"*) !5 / r(ux) - tizj p(s, dx)
". {. J X1>1)

'*:-< f{ luxjpCs, dx) _< vp(U'S)

a.e. [A], which concludes the proof. I

As we noted in Section II, our definition of stochastic integrals is the same as advocated

first by Urbanik and Woyczynski [30] and Urbanik [29] and later adopted by Rosinski

[23]. Thus our results on stochastic integrals of real functions relative to arbitrary ID r.

measures do unify and extend the pertinent results of these authors. Another approach

of defining stochastic integrals relative to symmetric S(a), and symmetric S(r,a) and

centered S(r, a), r. measures A have been taken in [2, 27] and [20], respectively. In these

papers, the integral f fdA is defined as Lp-limit, 0 < p < a, of a sequence of integrals of

simple functions relative to A; and it is shown that the space of A-integrable functions is the

L,(A)-space and that the integral map Lc,(A) - f f fdA E Lp(P) is a topological and

linear isomorphism. The rest of this section is devoted to show that our integrals as well

as the space L of A-integrable function do coincide with those of [2, 27] and [20], when

A is symmetric S(a), and symmetric S(r, a) or centered S(r, a) r. measures, respectively;

.* and, that the integral map satisfies the above cited property. Thus, we recover all these

results of [2, 27, 20] in a unified way. Finally, towards the end of this section we point

out certain facts ibout A-integrable functions for certain S(r, 1) r. measures.

If A is a centered S(a) (resp. S(r,a)) r. measure where 1 < a < 2, then E IA(A) I < 00,

for any q < a, and EA(A) = 0, for every A E S. Hence the ch. function of A(A) is of the

form (3.9), where v -=_ 0 and FA is an S(a) (resp. S(r,a)) Levy measure.

If A is a centered S(a) (resp. S(r,a)) r. measure and 0 < a < 1, then

(3.11) (A(A))(t) = exp (e itz - 1) FA(dx)

= exp {itvo(A) + 4 (e it" - 1 - itT(x)) FA(dx),

where v.o(A) fr r(x)FA(dx) and FA is an S(a) (resp. S(r,a)) Lvy measure for every
A C S. Therefore, we have (see Proposition 2.5 and Theorem 2.7)

(3.12) a(s) Jr(x)ps,dx) and U(u,s) Jr(ux)p(s, d) a.e. [A].
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Finally, if A is a centered S(1) (resp. S(r, 1)) r. measure, then A is symmetric and the

ch. function of A(A) is given by (2.1) with v. _ v, - 0 and FA being a symmetric S(1)

(resp. S(r, 1)) r. measure, for every A E S.

In the following lemma, we state the fact that the conditional Lvy measures p(s,.)

of S(a) (resp. S(r,a)) r. measure A are S(a) (resp. S(r,a)). The proof of this fact is

postponed to the next section mainly for convenience but also because this fact has more

relevance there. Formula (3.15) below follow from (3.14) by a standard argument. The

proof of (3.14) can be found in [201.

LEMMA 3.7. (a). Let A be a S(a) r. measure. Then a.e. [A]

(3.13) p(s, dx) = cl(s)I(x > O)x-'-'dx + c-1 (s)I(x < 0)IxI - 1 -dx,

where c1 , c S [0, oo) are ,(S) - B [0, oo) measurable.

(b) Let A be a S(r,a) r. measure. Then, for A almost all s E S,
00

(3.14) p(s,B) r p (s, (r B) n A) for all BE B(R),

where A {x E R: r- < [xI < 1> More generally, for A-almost all s E S, the following

formulas hold

.1f> f()p(s, dx) _00 rn f r(r x) p(s, dx),

( ),3<r f(x)p(s, dx) = EI r-k-'f6 f (r x) p(s, dx),

for every Bore] non-negative function f and an arbitrary integer k.
J

PROPOSITION 3.8. Let A be a centered S(a), or more generally, a centered S(r,a) r.

measure. Then the (IC) condition holds, for any 0 < p <z a, and LD,(S; A) = L,,(S; A) up

to a renorming, for every 0 < p < a. Consequently, there are positive constants C, and

C 2 depending only on p, r and a such that

(3.16) C, ( f IdA) < (E ( J fdA P) ' < C 2 ( IfI-dA

for every f E LQ(S; A).

PROOF: Since every centered S(a) r. variable is also a centered S(r,a) r. variable for

every 0 < r < 1, it is enough to prove the proposition for the case when A is a centered

S(r,a) r. measure.
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First we shall bound U(u, s). If 0 < a < 1, then by (3.12), we have

(3.17) IU(u,s) < JR Ir(ux)Ip(sdx) =JutlsZi5UI-} Ix'p(sdx) + JZl>IU-I p(sdx)

(for the sake of brevity we shall omit in this proof the phrase "for A-almost all s"). Let k

be an integer such that r < Jul < r . Using (3.15), we obtain

Iu-' xlp(s,dx) < I~z k~L zp (s, dx)
%"0

r.' =- r Ix p (s, dx)ofw

A; - • ° -'

.and, again by (3.15), we get

p (s, d) < { (s, dx)

'p 00

E r- k+'  p(s, dx) < 1p(s,A)Iu[.

By combining the above and (3.17), we obtain

(3.18) IU(u,s)l < Dp(s,A)lul,

where D-r 1 -r + (1 --r)- . Let now 1 <a <2. Then, by (3.10), we get

(3.19) :U(u,s)j < Ir(xu)- xul(s, dx) < Jul x Ip(s, dx).
J(Izu1>i} I uI -'

Let k be as above. Utilizing (3.15) again, we obtainP. .'

,Izp(s, dx) < lxlp(s,dx)J { !>ijl '} - I x=1>, }x

p... •Z ' rr x p(s, dx)

- I

p00

_ - p~P(s,,A)iu ' -

<A"
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which, together with (3.19), shows that (3.18) holds for all 1 < a < 2 with D =

Using (3.15) repeatedly, in a very similar way as above, one can find positive constants

D1 and D2, depending only on p, r and a, where 0 < p < a, 0 < r < 1 and 0 < a < 2,

such that
(3.20)

u2 j X2 p(s, dx) + uIP jxIPp(s, dx)

< D2 P(s, A)IUI'.

The condition (IC) follows now by (3.18) and (3.20) since, if a - 1,

u(u,s)j < Dp(s,A)u' < DD-1 Vp(u,s).

-"If a = 1, p(s, .) is symmetric and a(s) = 0; which implies U(.,s) = 0 and (IC) holds in

, this case trivially.

Combining (3.18) and (3.20) we get, for every 0 < p < a and 0 < a < 2 (including

(3.21) Dip(s, A)I u I< tp(u,s) = U*(u,s) + Vp(u,s)

< (D + D2)p(s, A) IU1,
where D = 0, if a = 1. We shall obtain now bounds for p(. ) utilizing (2.5); which, in

view of (3.10) and (3.12), reads

,U(1,s)I + Vo(1,s) - 1, if a - 1,

and V(1,s) 1, if a = 1. By (3.18) and (3.20), we get

Dip(s, A) < IU(1,s) + Vo(1,s) = 1 < (D + D 2 )p(s, A);

hence

(D + D 2)- < p(s, A) <_ Di '

Consequently, by (3.21),

DI(D + D2 ) -'Iu[' 5 4tp(u,s) < D '(D + D 2 )!ut'.

This shows that f C Lb if and only if 11f[11 = fS IflIdA < o0 and obviously the F-norms

[1" -[I, and a [ are comparable. Now, the inequalities (3.16) follow from Theorem

3.4 and the Closed Graph Theorem. |
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Remark 3.9. If A is a S(a) (resp. a S(r,a)) r. measure and a $ 1, then one can find a

(non-random) signed measure, say, A, such that A, = A - A, is a centered S(a) (resp. a

centered S(r, a)) r. measure (see [20] for a similar decomposition of S(r, a) stochastic pro-

cess). Thus the stochastic integral with respect to A is equal to the sum of the stochastic

integral with respect to A1 , whose properties have been described in the previous propo-

sition, and the usual Lebesque integral with respect to A,. Such a decomposition is not

*possible if a = 1. However, if A is an arbitrary S(r, 1) r. measure with v. =_ 0, then, using

(3.15), one can obtain the following bound:

IU(u, # < Ap(s, A)Iui (1 + (log lul)J),

where A = max {2(1 - r)- 1, Ilogrl- 1 }. By (2.5) we have Vo(1,s) = 1, which implies, by
(3.20) (which holds in the non-centered case with the same constants),

Df 1D-1 (s, A) < D - ' .

0.

Thus

_U(u, s)[ < AD,-'Jul (1 + J(log lul)l)•

Since u---* u(1 + logul) is increasing on R+, we get

U* (u, s) <AD-lu (Il+ Ilogul), u >0.

Finally, by (3.20) and the above inequality,

A, u < -tp(u,s) !< A2U (1 +1 1loUuI), U > 0,

where AI and A2 depend only on r and p < 1. We conclude that

~LlogL(S;A) r7 Lt,,(S;A) g- L,(S;A),

where LlogL(S;A) is the Orlicz space based on A (u) u (1 + Ilog ul). This generalizes a

result in [7], proven for the S(1)-case.

IV. SPECTRAL REPRESENTATIONS

OF GENERAL DISCRETE PARAMETER ID PROCESSES

. Let M be a S(a) Lvy measure on t2 = 2(N); then, as is well known [13], M admits

the representation:

(4.1) M =(Po x -y) 0 41-0
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where -. is a finite measure on aU, the boundary of the unit ball in 12, P. is a S(a) Ivy

measure on R and if, is the map: aU x R+  & t2 \ {0} defined by *o (u, x) = xu. It is

noted in [20, 211 that a representation similar to (4.1), can be obtained for any S(r, a)

Lvy measure but one must replace aU by the annulus A = {x : ri < IIixH < 1}. This

fact that M admits the representation like (4.1) plays perhaps the most crucial role in the
proofs of spectral representations of stable and semistable processes obtained in [2, 7, 8,

13, 20, 21, 27, 281. The basic idea of all these proofs is as follows: Given a stable (resp.

semistable) process X = {X,,} with paths in 12, one first represents the Lvy measure
M of £(X) as in (4.1), then one defines a r. measure A on aU (resp. on A) (or via a

Borel isomorphism on some other Borel subset of a complete separable metric space) with

control measure

FA(B) = % (A)po(B);

and, finally by choosing suitable functions f,, one shows that

(4.2) {= fdA {Xn}.

Further, using some continuity arguments, one obtains representation like (4.2) for contin-

uous parameter stable and semistable processes.

In order to apply a similar approach to obtain spectral representations of general ID

processes, it is thus necessary to obtain a suitable representation, similar to (4.1), for an

arbitrary Lvy measure M on 12. In order to make sure that the r. measure A retains

properties similar to those of the given ID process X, it is important that this representa-

tion be such that both FA(.) and p0 inherit properties of M (the Lvy measure of C(X));

e.g., if M belongs to a known class (say stable, semistable or self-decomposable) of Levy

measures on t2 then FA(') and po belong to the same class of Levy measures on R. That

such a representation is possible is shown in Theorem 4.2. As we will see, this representa-

tion helps us obtain spectral representations of most ID processes in a unified way which

include and extend, to a large degree, all known spectral representations to date of various
Sspecial ID processes.

We begin by introducing some notations and conventions which will remain fixed through-

out this section and the next, unless explicitly stated otherwise.

The notations aU and %P, are as above: aU = {zd 2 : lizl= 1}; ',o : aU x R+ "

12 \ {0} is the Borel isomorphism, defined by, 4F.(u,x) = xu (note 4'5 (z) = ( I' 11zII);

the natural (Borel-measurable extension of %Yo to aU x Ro, we denote, by 'o, where
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Ro = R \ {0} and, as noted before R +  (0, oo)). Next we denote, by S, an arbitrary

uncountable Borel subset of a complete separable metric space, by (P, a Borel isomorphism

from aU onto S, (see Theorems 2.12 and 2.8 of [17]) and, by Ii, and 4I, respectively, the

Borel isomorphisms from aU x R+ onto S x R + and from S x R+ onto t2 \ {0}, which

are defined by

I(u,x) = (p(u),z) and *(s,x) = zp-'(s).

Finally, we denote, by ,, the natural extension of I, to aU x R., and, by i', the natural

extension of *' to S x R0 . (Clearly, ,, is a Borel isomorphism onto S x R. and 'P is a

Borel measurable map onto t2 \ {0}). To keep easy track of these maps, spaces and the

measures (to be defined in the following), we found the following (commutative) diagrams

useful:

.2 \ {0} - au x R+ t2 \f{} - aU x R

'-1 fly,
SxR +  SxR

Diagram 4.1

Now we shall define certain measures related to a given Lvy measure on t2; notations,
Vb used for these measures, will also remain fixed throughout this section.

Given a Levy measure M on 2, the finite measure r o on B(aU x R+), defined by,

:.1 (4.3) 0 =M o41, where M,(dz) = min(1, 1z11)M(dz),

can be represented, by Proposition 2.4, as

weeq) M = LLU (fR+Ic(u, x)q(ud) I 0 (du),

..where q: U x (R +)  P [0, 1] satisfies conditions analogous to (d) and (e) of Proposition

.' 2.4, and -y. is the finite measure defined by

(4.5) -(A) ro(A x R+ ) = ] min(1, [IzI 2 )M(dz),

for every AcB(U). Now, we define the measures -y on B(S), p(s,.) on B(R + ) and F on

B(S x R + ) by

(4.6) 1= -YO 0P p(s,dz) = [min(l,fX1)]- q ( -(s), dx),
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for every scS, and

(4.7) F(C) J + Ic(s, x)p(s, dx) -1(ds),

for every CcB(S x R+). If M is symmetric, then r.(A x B) = ro(-A x B), hence, in

particular, -yo is symmetric (and we denote it by o). Using these and (4.4), we can and

do assume that q(., dx) chosen above is such that, for all ucaU,

q(u, dx) = q(-u, dx).

Consequently, if M is symmetric, the measures p(s,.-) satisfy:

(4.8) p(p(u), dx) = p(p(-u), dx),

for all ucaU. In addition to the measures p(s, .), -y and F, in the symmetric case, we also

associate (to M) the measures T(s,.) on B(Ro) and F on B(S x Ro), which are defined by

the formulas:

(4.9) -(s, dx) = [p(s, dx) + (-1) p(s, dx)],2

for all sfS, and

(4.10) F(C) ( Ic(sxh(sd) j(ds),

for all CEB(S x R), where (for reasons to keep similar notations in the symmetric case) we

write j for -f. (As we noted in Section I, we will assume that p (s, -) are naturally extended

to R0 (or to R) and we will use the same notations for the extended measures. Similar

remark applies to the measures (s,.), and to the measures FA(') and FA(') which are

:- defined in Lemma 4.1 (iii)).
In the following lemma, we collect a few facts about some of the measures defined

above; the proofs of these facts are rather straightforward. But we record these facts here

for clarity and ready reference.

LEMMA 4. 1. (i) The functions p and - satisfy analogs of (d) and (e) of Proposition 2.4.

(ii) The measures p (s,.) and - (s,.) are Lgvy measures on R; in fact, for all s S,

(4.11) min(1, IxjI)p(s, dx) J= min(1, 1X;)(s, dx)
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% further, the measures q and 0(s,.) satisfy:

(4.12) (-1) . 0

and

(4.13) -((u), dx) = -i(p(-u), dx) and 0(s, dx) = (-1) - (s, dx),

for all ucaU and sES.

(iii) The measures FA(.) - F(A x.) andFA (') -F(A x .) are Lgvy measures on R; in

fact,

(4.14) f min(1, x)FA (dx) = (A) and f min(1,x 2)FA(dx) = A),

for all AEB(S); further, FA(-)'s are symmetric and F satisfies (the condition of

0 symmetry):

i '' (4.15) F(VW((C)) - Q -C

for all CEB (aU x R. ) .

/ (iv) For every CcB (aU x Ro) ,

(4.16) FV((C))= - [F (Ij (C n (aU x R+))) + F (Ip (-C n (aU x R+)))]

(here F, F are the measures defined by (4.7) and (4.10) associated to the same

symmetric Lgvy measure M).

PROOF: The proof of (i) is clear by definitions; proof of (4.11) follows from the fact that

q(u, R+) = 1, for all ucaU. The proofs of (4.12) and (4.13) follow, respectively, from (4.5),

(4.6) and (4.8), (4.9). That (4.14) holds is a consequence of (4.7), (4.10) and the fact that

q(ut,R + ) = 1. That FA(') is symmetric is clear from (4.10) and (4.13); to see that (4.15)

holds, we observe:

- )

-'-U F(ijp(C) I (I C)(s~x)0(s~dx)) ;(ds)
S(f -o

::~~ ~~ =l,()((x)- (p(u),dx) %(du)
filJ(Ro /'C (()

' (recall, from (4.12), Y o p-'), which, by (4.12) and (4.13),
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" f" = fR , cc) (u-),x) (u ), d ) (d )

. i ( ,, _C) ( u)s, x)( Y( ) )((ds)

,,. =Fq(-(C)).

Finally, we prove (4.16); we observe, from (4.9) and (4.10),

+ J (f (s,x)(1) p(sd, z)) (ds)

I,(4 ,(Cn(UxR+))x) psd);d)

fSq (dR)

"p-.-: + i' (C)(,(-)p(, dx) dY(d()

-F (I (C n (U x R+)))

+ f' (f~ Ii (C) ( (u) -x)p p(u), dz) Y0 (du)

.j an (I(. (C n (u x R+)))

F Iv (C U ( U x R+)))
;'+ -! ,Uv I .€-C)(p(u),x)p(p(u),dx) qYo(du)

• P- '-':(u.sing (4.12) and (4.13))

h= b - ' (Ivo (C n (aV x R+))) + -r (Ipo (-C n (aU x R+))).|

Now we are ready to state and prove our promised result providing the useful represen-

fttation, similar to (4.1), of an arbitrary LUvy measure on 12.

fTHEOREM 4.2. (a) Let M be a Livy measure on t2; then F is the unique measure on

B(S x R +) satisfying

(4.17) M = F o
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(hence, from (4.7) and (4.17)) we have the desired representation of M : for every DB (t2 \
i {o1),

(4.18) M(D) /$ (JR+ ID (xp-1(s))p(9, dx))- (ds);

more generally,

(4.19) j fdM f J f(xp-1(s))p(9, dx)) y(ds),

whenever either f _ 0 or f,.\(o} If dM is finite, in the second case f can be complex.
(b) If M is symmetric, then F is the unique measure on B(S x R,) satisfying the

*i symmetry condition (4.15) and

(4.20) M 0

and, in addition to (4.18), M also admits the representation:

(4.21) M (D) =Af (f40 ID (X P 1(s)) 0 (s, dx) ) Y(ds),

for every DEB (1 2 \ {0}); and the analog of (4.19) also holds.

PROOF OF (a): From (4.4), (4.6) and (4.7) we have, for any CcB(S x R+),

(f,= C(P(u),X) [min(1,x 2)]- q~u, dx) -Y(du)

8UxR+

ff I (C( (u,x) [min(1,2)] - ' d',

On the other hand, for any DcB(t 2 \ {0}),

M(D) [min(1, Ilz112)]1 dMl, 1
4 JD

ff I* -(D) (ux) [m in(1, IX 2 )1 dI',

O~U x R
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by (4.3) a..,I the change of variable formula. Hence, since I 1 ol-I (D) (4o I,,)-' (D)

.0... 1 o(D), we have M(D) = F (4-'(D)); proving (4.17). The proof of (4.18), as noted in

the statement of the proposition, now follows from (4.7), the change of variable formula

and the fact that *(s,x) = xp-'(s). The proof of (4.19) follows from (4.18) and the

standard limiting arguments (see, e.g. [1, p. 104]). Finally, the proof of uniqueness of F

is trivial, since the map * is a Borel isomorphism between S x R + and t 2 \ {0}.
- - -- 1

PROOF OF (b): To prove (4.20), we use (4.16) and the facts 4 = 40 oI and * = ooI1

(look at the Diagrams 4.1). Thus, for any DB (12 \ {0}),

[F (1, (4-'(D) n (au R+)))]

75.: = [F (Ijp ( P'(D))) + F (I .*'--))

..- F(*-'(D)) + -F

- ![M(D) + M(-D)] = M(D),

(by part (a) and symmetry of M). To see the uniqueness of F; suppose F 1 is some other

measure on B(S x Ro) satisfying Fi/V(C)) = F1 Qk(-C)) and M o F o4i Then, for

any DfB (t2 \ {0}),

-,.M(D) - (iV'(D) n (S x R+)) + Fi (-'Pv'(D) n (S x R)

"-'= -(-'(D)) + F, ( 4 (q'(-D)))(WxR-)

'#.2".V =,(-'(D)) + (Ijp (* D)))

==2F1 (-'(D))

where we used the symmetry condition of F1 twice and the facts 4' = 40o o1, and

* - 4,, o J .Thus F, (4'-'(D)) M(D); consequently, using uniqueness of F of part

(a), we have ,1  F on B(S x R'). Using this, (4.16) and the symmetry condition of
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F 1 , we have, for any CcB(S x Ro) ,

(4(c)) = i (4(c) n (S x R+)) + , (C) n (S R-))

= , (I, (C n (au x R+)))+ , (+ , (-c n (au x R+)))

"F (Cn (aux R)))+ + F (l(-cn(auxR+)))
- = F p (e))

consequently F, = F on B(S x R). The proof of (4.21) is now a consequence of (4.10),

change of variable formula and the fact that 'I,(s,x) = xp-'(s); finally, the proof of the

analog of (4.19) follows as noted in part (a). I

As we noted in the introductory remarks of this section, our representations of the

L~vy measure M, obtained in the above theorem, is quite satisfactory with respect to the

question: Do the measures p(s, .), O(s, .), FA(') and FA(') inherit properties of M? We

• address this question in Proposition 4.4 for three important classes of L~vy measures M;

and show that M belongs to a fixed class of Lvy measures on t 2 if and only if p (s,.)

belongs to the same class of Lvy measures on R, for almost all s; similar result holds

when p (s, .) is replaced by any of the other three measures. The methods of proof of this

proposition suggest that one can possibly prove similar results for other classes of Lvy

/ - measures.

To facilitate the presentation of this result, we first introduce few more notations, and

then prove a lemma which will be needed for the proof of the proposition. The contents

of the lemma are essentially known but there is no single source to which reference can be

made. For this reason and for completeness we include this lemma.

- :. Let H denote a finite or infinite dimentional real separable Hilbert space. Then, we

denote, by AI(H), the set of all S(r,a) Levy measures on H, by .M2 (H), the set of all

S(a) L6vy measures on H and, by M3;H), the set of all SD Lvy measures on H. We

recall that, for a given Lvy measure M on H, the following are well known:

(4.22) Mc M(H) - rM = r M,

(4.23) MO.M2 (H) =tM = t. M, and for all t (0, 1),VL.

(4.24) MC.M3 (H) 4 t . M < M, for all tc (0, 11.

We also recall that if p is and i.d. measure on H with Livy measure M; the Lvy

measures of IA', the s-th roots of p, and s , > 0, are, respectively, sM and s M. We
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I.y,

will use these facts in the proof of the lemma below. Now we are ready to state the lemma,

which says that the interval (0, 1] in (4.23) and (4.24) can be replaced by any countable

dense subset of it.

LEMMA 4.3. Let M be a Lgvy measure on H and T any countable dense subset of (0, 11,

* - then ME.M2 (H) (resp. ME.M3 (H)) 4 > tM = t M (resp. t . M < M), for every tET.

PROOF: Let p be the prob. measure on H with the ch. function

(4.25) A2(y) = expf (ei(Z Y) -- 1- (ir(z), y)) M(dz).

Now assume tM = t. • M, for all tcT. This implies (use ch. functions)

(4.26) At t . A* 6*(t), for all t(T,

where x(t)EH. Now let to be an arbitrary element of (0, 1), choose a sequence {t,,} from T
w W tsuch that t,, -- to; then t.--t . p and, by the continuity of {ta :s > 0}, Utn 0.

Hence, using (4.26), we also have 6 z(tn) w 6 z(to). Showing 1Ao . • x b.(to); thus we

-2 have jt = t- L I * .(t), for all t. Hence tM = t. • M, for all tf (0, 1], or ME., 2 (H). The

converse part of course is trivial.

k The proof in thp self decomposable case is similar: The condition t • M < M, for t(T,

implies M = t • M +- Mt, where Mt = M - t . M is also a LUvy measure (as 0 < Mt < M).

This, in turn implies: ji = t • * vt, for all tET, where ui is as in (4.25) and Vt an i.d.

measure with L~vy measure Mt. Now, as in the above proof, it follows that jL = t •t * Vt,

for all tE (0, 1]. This implies M > t M, for all tE (0, 1]. I

PROPOSITION 4.4. Let M be a Levy measure on t 2; and p(s,.), FA(') and -y be the

measures related to M as defined prior to Proposition 4.1. Then, for any fixed i =

1,2,3, MEM 1(H) : off a "--null set, p(s,.)M,(R) -::, FA(.)€M 1(R), for all A.B(U).

PROOF: Throughout this proof, we denote by A, B and D the generic elements of B(4U),

B (R') and B(V 2 \ {0}), respectively. First we observe, from (4.18), that for any a > 0

% (4.27) a. M(D) 1 I-'D (xpz-'(s)) p(s,dx) "y(ds)

I(IR D (axp -1(s) p (s, dx)) -y ds

II(R D (xp-r1(s)) ap (s, dx)) -1 (ds);

and, if D =*(A x B), then (recalling *-'(z) (P ( )liz11) we get, from (4.27),
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(4.28) a -M(D) =If (f IA 'A B(49, x) a p(a, dx)) -1 (das)

= X )R+

= f1P (R+ )B -1 ds)

= a . FA(B).

Ky Further, for such a D,

(4.29) aM(D) = ID (xz-'(s)) ap(s, dx)) -y(ds)

= = (R+ IAxB (s, x) ap(s, dx)) -y(d)

= aFA (B).

Now we are ready to prove the proposition for i = 1. Let McM I(H); hence, by (4.22),

rM = r- • M. Therefore, by (4.28) and (4.29), rFA(.) = r FA(.), for all A; show-

ing FA(')cEMl(R). Now let FA(')cM1(R), for all A; then, from (4.28) and (4.29) again,

y rp(s,B) =r • p(s,B) a.e. [-y], for every fixed B. But, as B(R) is countably generated,

rp(s,dx) r .p(s,dx), off a -y-null set. Showing p(s, .)eMI(R), off a -- null set. Finally, if

p(s, .).MI(R), off a -y-null set, we have, from (4.27), that rM - r M or that ME MI(1 2 ).

Now we consider the case i = 2. In view of the arguments used above, the only part
that needs a justification is the proof of FA(.)C.M2 (H) implies p(u, .)EN 2 (R), off a -- null

set. Let T be a countable dense subset of (0, 1]. Then, assuming FA(.)E M 2 (H) and using

(4.28) and (4.29) and the fact that B(R) is countably generated, we have, for every t(T,
tp(s,.) = t p(s, .) off a -y-null set Nt. Hence, same is true, for all tET, off the -- null set

N UteT Nt. Therefore, by Lemma 4.3, p(s, ') EM 2 (R), for all s V N.

Finally, we consider the case = 3; once again the only nontrivial part is to show

p(u,.)E.M3(R) off a -- null set assuming FA(.)CM 3 (R), for all A. To prove this let FA(.)f

.M3 (R), for all A; and let A = {(s,t), 0 < s < t < oo,s,t rational} and T be a countable

dense subset of (0,1). Then, for every fixed t and BEA, we have

St. FA(B) = t.p(s,B)'y(ds) p(sB)-y(ds) = FA(B),

for all A. Hence, since p(., B) and t p(., B) are finite and T and A are countable, there

exists a -y-null set No such that if s V N o then t . p(s, B) :_ p(s, B), for all BEA and all tET.

This, along with Lemma 4.3, show p(s, .)cM 3 (R) (note p(s, Ro) = 0), off the set No . I
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REMARK 4.5. If M is symmetric, then exactly the same proofs as above show: For every

fixed i = 1,2,3, MEMi(H) * )cMi(R), off a y-null set *FA()cMi(R), for all A.

Now we are ready to obtain the main results of this section; namely, the spectral repre-

sentations of various i.d. discrete processes. We begin with a few more necessary notations

and definitions:

Let pi be an ID prob. measure on t2 with the Levy representation: JL -- [Zo, K, M],

where z0 f e2 , K is the covariance operator and M is the Lvy measure of A (which will
always be assumed symmetric if 1i is symmetric). Let K(y) = j Oj (ej,y) ej, where

/3 _> 0, >-j, 3 < oc and {ej} is an orthonorrnal set in t2. Define the finite measures 50

,.- on aU and v0 , v on S by:

1 b .1,if zo54

0, if zo  0

and

0. o o 0 P-1, fq =

Let A be the ID r. measure on (S, B (S)) with parameters (vo, vi, F.) (see Proposition 2.1),

we will refer to A as the associated r. measure of v or of [z0, K, MI. If A is symmetric

(hence M is also symmetric according to our convention), then the r. measure I with

parameters (0, vi, F.) will also be referred to as the associated r. measure of A or of

[0, K, M]. (Here of course, F and F. are the Levy measures on R as in Lemma 4.1). In

order to keep similar notations, we will write v for the measure -y defined in (4.6); and, in

the symmetric case, we will use the notation Til for v, and P for v. Note that the control

measures of A and A are, respectively, given by A = Lo + v, + v and i,1 + P (see (2.3)).

The above notations and conventions will remain fixed throughout this and the next

section; in addition, we will denote, by ?r,,, the n-th coordinate projection on t2 and, by

g, the Borel map on S defined by g, (s) = 7r,,(P- (s)). In the following lemma, we record

three integral identities, these will be needed in the sequal. The proofs of the first two are

straightforward and the proof of the last is a direct consequence of (4.19).
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LEMMA 4.6. Let a,a 2,... ,an be n-real numbers, then

(4.30) I (ag(s) v. (ds) = E a rj(zo),

(4.31) is ajgj(s) 2 I (ds) EZ ak ( aji(ek) = (Ky,y) ,
f(j=l k =

,.,(4.32) ism rin (l,g2(S)X ) p (s, dx))L(ds)= mrin (1, 7r2(Z)) M(dz).

*,. ** We are now ready to state and prove the most basic result of this section; this, as we

will see, essentially provides the spectral representations of all discrete ID processes.

* THEOREM 4.7. Let pu be an ID prob. measure on t 2 with Lvy representation [Z., K,M]

and let A be the associated ID r. measure on S. Let Yn(') = rn(.) n = 1,2,..., be the r.

variables on (t2, B(t 2 ), A). Then the functions g, 's are A-integrable, and we have

{Yn} S {jndA}

PROOF: In order to see that g,'s are A-integrable, we have to verify (i)-(iii) of Theo-

rem 2.3. But, in view of (4.31) and (4.32), and the fact that ft2 min(1,irn(z)2 )M(dz) <

fH min (1, lIzll 2) M(dz) < oo, we need only verify (i). Thus, in view of (4.30), we need

only to verify that

i (f+~ [r(gn(s)z) -gn(s)r(z)Ip(s, d ) v(ds)

is finite. But this follows since the absolute value of the integrand is no more than (1 +

g, (s) )max (1,g2(s)) and since Ign(s)I < 1 and v is finite.

3I. In order to show {Y,} = {fs g,dA}, we must prove

(4.33) E a v.) (1) -j aL ( f dA (1),

for every fixed k, and a,,.. .,ak real.
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Now, the left side of (4.33)

=Eexp %EajYj

(s exp 1( a,7,() d.= e'<" )di

ft" =1 2

=exp {i(zoy) (KYy) + e i - 1- (r(Z), )) dM}

where y = (ai,... ,ak, 0,0,...); and the right side of (4.33), by (2.5),

.exp d ajg,(S) -o(s)) ,,,(ds)
j=1 j=1

is i~x -j (go,,j
-- J+ () - 1 - aigj(s)r(x) p(s, dx) v (ds) }

Thus, recalling (4.30) and (4.31), we need only to verify that

(4.34) e/') - i (r(Z), Y)) dM

Is [ IR (ez(Z, aj,9,(.))- 1i E ajg (S) r() p(s,dx)1 v(ds).
f- f + j=1

But, from (4.19), the left side of this equation

,s [fi (e i( z ( ) ) -1- i( r(xp -' (s)) ,y)) p(s, dx)1 v(ds)

-I: [i + (eizZ:=..- i a,r('() 1- ( ir (:-1(S)) (.) P(SdZ) -<d,,:
"Nsince

|{ xz'-'(s), if 0< Ilzo-(s)il z<1)
iT -(XW'(s)) : sd-) ds

,- ) - (S)' if x > 1

Thus, since irj (p-(s)) g ,(s), we have the validity of (4.34). I

Now we show, in the following corollary, that the above theorem yields spectral repre-

sentations of all discrete ID process without having to center or symmetrize the processes.
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COROLLARY 4.8. Let {X,} be an ID process satisfying E[X,, < oo, for some q > 0.
Let b,, > 0 be such that Y = {b,,X,,}E 2 almost surely. Let 1i be the law of Y on 12 (which

is ID [20]); and let A be the associated ID r. measure on S, then f,= bn'g, 's belong to

Lo, (S; A), for any 0 < p < q; and

(4.35) {Xn} If {fn dJ}

PROOF: Clearly fn's are A-integrable as gn's are. To see that (4.35) holds; let a,,..., ak

be real numbers, then, noting that £(YI,... ,Yk) C £ (rl ('),... ,rk()) and using the above

theorem, we have

(-= 1  =1)

, a3 
93.  

(1)

(. i f dA (1)
~(j=

showing the validity of (4.35). Finally, since ElXnlp = El f fdAIP < o0, for any 0 < p <

q, we have from Theorem 3.3 that feL 1 (S; A). I

Before we can assert that the above theorem yields known spectral representations for

discrete stable and semistable processes, we need one more result:

LEMMA 4.9. Let Y - {Y,} be an ID process with almost all sample paths in 12. Then

p £(Y) is an S(a) (resp. S(r,a); SD) prob. measure if Y is an S(a) (resp. S(r,a); SD)

process. Further, if Y is centered S(a) (resp. S(r, a)) process then it is a centered S(a)

(resp. S(r, a)) prob. measure.

PROOF: A proof of the last part in the centered S(r, a) case is provided in [20]. Similar

proof works in the other cases. We outline the proof in the SD case. Denote by 7r,,...,,

the natural projection from 12 onto Rn; and let 0 < a < 1 be fixed. First observe
;""' rj..r = £(Y 1 ,...,YL) and (a.ii)oir -j •, a(ior - j. =.(i..,~.HneA. . 07- .I..n Y .. ., n n a 1 r,.. .,,n = a (1A o 7r,...,. J = a " -Z(Y ,, ). H ence,

as Y is a SD process, there exists a unique prob. measure vn on Rn (recall (1.3)) satisfying

(4.36) IL 0 o7r-1.' (a 1A) or-1 -
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Now, using Kolmogorov's extension theorem, we construct a unique prob. measure L, on

R' with v o r -. , = I. , . Using (4.36) and viewing the measures ju and a .I on R' and

using ch. functions, we find

A4 = a.jI* ui

on R'. But, then 1 = A(t2) f /(t2 + z)a -I(dz); hence L(t2) =1.

In view of Corollary 4.8, Lemma 4.9 and Proposition 4.4, we obtain all known spectral

representation for discrete parameter stable and semistable processes [2, 7, 13, 20, 27,

28] without having to center or to symmetrize the process. Of course, these three results

put together also yield similar spectral representations for SD processes.

V. SPECTRAL REPRESENTATIONS OF CENTERED

CONTINUOUS PARAMETER ID PROCESSES

Unlike the discrete case, our methods, unfortunately, do not allow us to obtain spectral
4 representations for arbitrary continuous parameter ID processes. However, if the process

satisfies some additional conditions then one can indeed obtain spectral representations

for such a process. These, besides providing spectral representations for new classes of ID

processes, also yield, in a unified way, all previously known spectral representations for

stable and semistable processes. We address these points in this section; as we noted in

the previous section, the notations and convention of the previous section are in effect in

this section as well.

Let T be an arbitrary set and X = {Xt : tET} be an ID process which is separable in

Lq( = Lq(fl; P)), 0 < q < oo; (i.e., there exists a countable set TO = {t,,} of T such that,

for every tET, there is sequence {Sm} C T with X.. -- Xt in Lq). Recall that if T is a

separable metric space and X is Lq-continuous than X is separable in Lq.

If q 0, we choose b,, > 0 so that

o

E IbnX, < 00,
n=1

almost surely, where X, = Xt,; if q > 0 (hence E IXtl
q < oo, for all t), then we choose

b,, > 0 satisfying, additionally,

Iooi

(.)E Ib,,X,,12  < e0.

n=1
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A choice of ba's satisfying (5.1) is possible follows, since

E bXI I b,,X,,I = ,b,,X,, Eb ,

.. :. ,n= 1 n = 1
*< if 0~ < d ~ nn 2 < andb~n~}

if<q<2,an

2 2-n bq 2 q Iq(-, = n X00

if 2 < q < oc. Thus, if q > 0, then we have that ft2 Ilzll qd/ < 00; hence ffll- 1>1) lZll q dM <
oc, where M is the Lvy measure of A, the law of Y {Yn bX,} on t2. Further,

*. - recalling (4.19), we have

.J{((z>,} jzjq dM 1 (f+ Ix-l(s)jql(jxj > 1)p(s, dx)) v(ds)

:.i:f : + IXlqI (IXl > 1) p (s, dx) v(ds)

(5.2) > f IxIqI(Ix > 1)FA(dx), for every A.

In the following, the above assumptions and notations will be in effect.

We shall obtain spectral representations for ID processes X which satisfy any one of the

following additional assumptions:

(A-i) X is symmetric and 0 < q, arbitrary,

(A-2) X is arbitrary (as above) and 1 < q with E(X,) = 0,

(A-3) X is centered S(a) or centered S(r,a) 0 < a < 2 and 0 < q < a.

In order to obtain these spectral representations, we need to define additional r. measures

(besides A in the previous section) associated to the p. measure t (the law of Y). If X and

q satisfy (A-i), we associate to ju the symmetric r. measure Aq with parameters (0,L,F.)

(see the discussion prior to Lemma 4.6). If X and q satisfy (A-2), we associate to 1L the r.

measure Aq with parameters (vo, vj, F.), where vo and v, are given in (3.9) (recall that,

in view of (5.2), E IAq(A)I' < oo). If X is a centered S(a) (resp. S(r,a)) process, then by
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Lemma 4.9, p is a centered S (a) (resp. S(r, a)) p. measure; and, hence by Proposition 4.4,

F is a S(a) (resp. S(r, a)) Lfvy measure. In this case, we associate to p the r. measure

A with parameters (v., 0, F), where v. is given in (3.9), if 1 < a < 2, and in (3.11),

if 0 < a < 1. Note that, as follows from (3.9) and (3.11), A is a centered S(a) (resp.

S(r, a)) r. measure. Similar remark applies when X satisfies (A-i) and X is a centered

S(a), S(r, a) or SD process; and when X satisfies (A-2) and X is a SD process.

Now we are ready to state and prove our main result of this section.

THEOREM 5.1. Let X {Xt tfT} be an ID Lq-separabIe process satisfying any one
of (A-1)-(A-3) assumptions and let A be the corresponding ID r. measure with control

measure A. Then,

(5.3) X _ {f ftdA: tET),

where, for every t, ftELbq(S; A). Further, under assumption (A-3) A is a centered S(a)

(resp. S(r, a)) r. measure, if X is a centered S(a) (resp. S(r, a)) r. process.

PROOF: The proofs under any one of the three assumptions are similar and use Proposi-

tions 3.6 and 3.8, the methods of proof of Theorem 4.7, and the Lq-separability of X. To

*exhibit the ideas of the proof, we outline the proof only under the assumption (A-2).

Since vo is a finite measure, the proof of the fact that g,(s) = 7.(p-(s)), n 1,2,...,

are Aq-integrable is exactly the same as in Theorem 4.7. Now we show that

(5.4) {{rf(.)} d {JgdAq}.

F ix a 1 ,.. ,a, k real numbers; then recalling that

e(z,Y)d =exp (Ky,y) + ei(Z') --1-i (z,Y) dM
2' ft2

for every yW2 , and, using (4.31) and (4.19), we have

+ j { Y'Zi aiiz 1 ~ ir(z) }dM]

= exp f g2 (s)vI (ds)

Cds))Psd) ~s

+ S {I+(ez) 1
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Lik
where g(s) E,=, ajgj(s). On the other hand, by (2.5),

(5.5) g(s)dAq) (1) = exp g(s)a.(ds) - -1 (ds)

'(C+ (eI= () - 1 - ig(s)r(x)) p(s, d) v (ds)

The first and last integral on the right side of (5.5) can be combined to see that Z(fs g(s)

dAq) (1) is equal to L ajr(')) (1); proving (5.4). Now using the same argument

as in Corollary 4.8, we observe that

{Xj~ ~ET} { ft,.dAq t,,4T

where ft. = b-1 g,. According to Proposition 3.6, we have that the map

Lo,(S,,q) 3f f* fdAELq(f,P)
0'

is an isomorphism. Let tET; choose a sequence {Syn} _ T, such that X.m . Xt in Lq. It

follows that {fs f.adAq} converges in Lq; hence, from Proposition 3.7, we have that there

exists an ft in L,(S,Aq) and that fs fa dAq - fs ftdAq in Lq. Now, in order to prove

(5.3), we must show

for , (X, . I Xt, (f ftdA9,..., fftdA9)

for any fixed f k,...,1 ,ET. But this follows from the usual limiting arguments: Fix real

numbers al,...,ak and choose {si} CT. with X.,, --. Xt., i = 1,...,k. Then, from what

we have proved above, fs fj, dAq fs ft dAq in Lq, as j - oo, for each i = 1 ;

therefore kj I L n a1 fS f.jdAq - k=I ai fS f dAq in Lq. Thus, since -i=, aiXs,

SaXt, in Lq and a= f f.,,dAq E I aX,,, we have EZ I a, fS ftdAq d
Ek
-i= 1 aiXt.. This completes the proof as a,,... ,ak were arbitrary.I

Remark 5.2. (a) As noted in the introductory remarks, the above theorem obviously

yields the known spectral representations for stable and semistable representations [2, 7,

13, 20, 27, 28].

(b) One important point reg:rding the above theorem which is not explicitly stated but

should be emphasized is the fact that the map

k k

Lq(fl;P) - E aXt, Zaj ft,L, (S;A)
j=l j=1
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extends to topological isomorphism from the Lq-closure of the span of (Xt tTJ} onto

the closure of the span of {ft : tET} in the space LO,(S; A). This fact is important in

that it would hopefully allow one, just as in the case of stable and Gaussian processes, to

study the prediction problem and the structural properties of the process by making use

of the above isomorphism and the rich structure of the (function) Musielak-Orlicz spaces

LO, (S; A).

(c) Theorem 5.1 raises the obvious question: For what other (besides those satisfying

(A-1)-(A-3)) L-separable ID processes X ={Xt: tcT}, one can obtain spectral represen-

tations? A careful look at the proof of Theorem 5.1 reveals that one can obtain a spectral

representation for any Lq-separable ID processes X for which the r. measure A associated

to /L (the law of Y - {bXt,}) can be chosen so that:

Wi {17.H)} = {fs gdAJ

(ii) the map L4q(S;A) D f fSfdAfLq(fl;P)

is an isomorphism, where b,, r,, g, are as in the theorem. Unfortunately, this criterion is

not very satisfactory as the conditions (i) and (ii) are not explicitly given in terms of the

given ID process X. Nevertheless, as we exhibited in the proof of Theorem 5.1, if more

information is available about X this criterion can be successfully applied to obtain the

spectral representation.

(d) Finally, if one is interested in obtaining spectral representations of arbitrary (i.e.,

those which are not Lq-separable) ID processes X = {Xt : tcT}, the methods used in

Theorem 5.1 are not adequate. It appears that to handle such a problem one must replace

the space t2 by a much larger linear space E, like RT, obtain a factorization of M, the

V L~v-y measure of the law of X on E, similar to (4.18) and then, using the methods of

Theorem 4.7, obtain a representation of X. At present, however, we are unable to see our

way through clearly on this point; and we hope to shed more light on this in the future.

45

-:Z.4

,w



VI. REFINEMENT OF SPECTRAL REPRESENTATIONS

IN DISTRIBUTION TO SPECTRAL REPRESENTATIONS

WHICH HOLD ALMOST SURELY

In this section, we shall show that the spectral representations of stochastic processes

obtained in the previous sections can be modified so that the new representations hold

almost surely. This, however, requires that the processes be redefined on a slightly larger

prob. space. The possibility of such a refinement, by making use of the randomization

lemma (Lemma 1.1 [12]), was suggested to us by 0. Kallenberg. It is a great pleasure for

both of us to thank Prof. Kallenberg for this suggestion. For our purposes, we shall need a

slight generalization of the randomization lemma, which can be proven essentially by the

same argument as Lemma 1.1 [12]. We omit this proof.

LEMMA 6.1. Let C and r' be random elements defined on the prob. spaces (fl, P) and

(0, P'), and taking values in the spaces S and T, respectively, where S is a separable
dmetric space while T is a Polish space. Assume that f(q7') for some Borel measurabled f

function f: T - S. Then there exists a random element Y7 = on the ("randomized")

prob. space (fl x [0, 1], P x Leb) such that = f(?7) a.s. P x Leb.

THEOREM 6.2. Let {Xt : t(T) be an ID stochastic process defined on a prob. space

(11, P). Assume that

{Xt: tcT} = {f ftdA' :tT},

where A' is an ID r. measure defined on a prob. space (11', P') and S is a Borel subset of a

Polish space. Then there exists an ID r. measure A defined on the prob. space (fl x [0, 1],

P x Leb) such that

{A(A): AcS} = {A'(A): AES}

(here S is the Borel a-algebra of S) and

Xt = ftdA a.s. P x Leb,

for every tcT.

PROOF: We have that ftcLo ° (S; A) for every t(T, where A is the control measure of A'.

Since S is countably generated, Lb is separable. Hence there exists a set TO  {t,}no=LI C

T such that {ft,}n__ is dense in {ft)tT c L,0. Define :fl : R' by
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Choose S. {A}j_ 1 to be a countable algebra of sets such that So c S and a(S.) S.

Define 17' : A - R' by

,...17'(w') = (A'(A 1)C(L'), A'(A 2) (W'),..)

Since, for every f(L, there exists a sequence {g,} of simple So-measurable functions such

that g. -- f in Lbo, we get, by Theorem 3.3, that fS g, dA' -* f5 fdA' in prob. as k -* o.

In particular, fs fdA' is equal a.s. [P'] to some v {A'(A,) : j> 1} = o(Y7')-measurable r.

variable. Consequently, for every n, there exists a Borel function P" R' - R such

that

(6.1) fsft~dA' = p(Y' a.s. [P'].

Then, by the assumption of our theorem,

0d_!• {Xt. :n > 11}. (17') :n >1}

or
d

where t R' - R' is the Borel function defined by 0 (x) ( (x(), p,(x)...) xcROO.

In view of Lemma 6.1, there exists an R"-valued r. element Y7 defined on (f/x [0, 1], P x Leb)

such that 77 Y7' and O -<(t7) a.s. P x Leb. Put

A(A.) = i', Ac So.

d
Since Y' is the restriction of the r. measure A' to the algebra So and 17 71', there exists a

unique (modulo P x Leb) extension of A to a r. measure on a(So) S such that

. (6.2) {A(A) A(S} {A'(A) AES}.

By (6.1) we get

P W f ft dA a.s. P x Leb;

which yields

(6.3) Xt J ift. dA a.s. P x Leb,
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for every n > 1.

Let now tT be arbitrary. We can choose a sequence {tn(k) }oo= C To such that ft.(k)

ft in Lo ° . By (6.2) and the assumption of our theorem,

(x".k) x,) ft n hdA tdA).

Since fs ft n(A)dA - fs ftdA in P x Leb as k o 00, we get that Xt,)* Xt in P x Leb

as k -- oc. By (6.3), Xt = fs ftdA a.s. P x Leb. |

Remark 6.3. In the above proof, the fact that the r. measure A is ID or even indepen-

dently scattered is not important. In fact, similar methods can be used to prove a version

of Theorem 6.2, where A is an arbitrary random measure and f fdA is defined as a limit,

in some appropriate sense, of stochastic integrals of So-measurable simple functions.

VII. APPENDIX

PROOF OF PROPOSITION 2.4: First we note that (c) implies that Qo(.,B) is a-finite for

* •every BEB. To begin with we assume, in addition, that X = R and B = B(R).

Note, for every fixed BeB, Q.(.,B) < Q.o(.,X) = A0 (.); therefore wecan define
-. dQ 0 (.,B)

(7.1) q0 (., B) dA0

Using uniqueness of the Radon-Nikodym derivative and the properties of Q0, one can easily

verify that q. satisfies the following properties:

(a') If {Bj} _ B, B, TB then qo(.,Bj) T qo(.,B) a.e. [A0],

. (b') If {B,} C B, Bj J B, then q0 (.,Bj) J (.,B) a.e. [A0],

(c') q0 (.,X) 1 a.e. [A0].

Let D be any countable dense subset of R; using (a'), (b') and (c') we can choose a

set MEA such that Ao(M) = 0 and if t 0 M, then qo(t, (-oo,rij]) < qo(t, (-oo,r2), for

rl, r 2 cD, ri < r2; and lim q°(t, (-0,r]) = 1, lim q.(t, (-0,r]) =0. Let, for ro ED,

reD reD

.. N, = t M: lim q0 (t, (-00,r]) > q.(t,(-,ro]
r D

then, by (b'), A(Nro) = 0, for all roED. Set N M U UNr, and define, for every

(t,x)cT x R,
F()), if tEN,

limr7 q, (t,(-oo,r]), if t q N
rD
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where G is an arbitrary prob. distribution function on R. It is easy to see that, for

every fixed t, F(t,.) is a prob. distribution function on R and, for every fixed x, F(, x)

is measurable on T. Thus, for each t, there exists a unique prob. measure q(t,.) on R

satisfying

q(t, (-oo, x])= F (t, x),

for every xcR. Now, using the standard monotone class theorem argument, we obtain

that, for each BEB, q(.,B) is measurable and that q(.,B) = q(.,B) a.e. [Ao]. Hence, we

have that q satisfies (d) and (c) and, from (7.1),

(7.2) Q. (A, B) = J q(t, B)A (dt),

for all AcA, BEB.

Now let (X, B) be standard Borel space; then one can find a Borel subset E of R such

* that B and B (E) are c-isomorphic. We denote this isomorphism by r, and we define

Q (A, F) = Qo (A,r r-' (F n E))

for AEcA, FEB (R); then, from what we have proved above, we obtain q' : T x B (R) -* [0, 1]
which satisfies (d) and (e); and, (7.2) with Q0 replaced by Q' and q by q'. Finally, let

q(t, B) = q' (tr(B)) ,

* for every tET, BEB. Then clearly q satisfies (d) and (e); and, from (7.2), we also have

Q0 (A,B) = Q' (A, r(B))

= f q' (t,r(B)) Ao(dt)

= q(t, B)A. (dt).

Now, using Tulcea's theorem [IL, p. 209] there exists a unique Q on A x B such that (2.2)

holds. The uniqueness of q(.,.) as stated in the last part of the proposition now follows

easily using the fact that B is countably generated. |
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